Milagros Ribas

@

About Milagros Ribas

Milagros is a content writer with more than 8 years of experience in writing compelling narratives on diverse topics. She holds a BA in translation and thrives at translating complex tech concepts into engaging and accessible content for different audiences. In her free time, she loves running, watching movies and learning new languages.

Languages, frameworks, tools, and trends

AI Myths Debunked: Why Your Job Is Safer than You Think

In the age of rapid technological advancement, and especially since the appearance of AI, one of the main concerns that have arisen is whether machines and algorithms will replace human jobs in the near future.  Media headlines often proclaim a looming era of mass unemployment, painting a dystopian picture where machines render human labor obsolete…. View Article

In the age of rapid technological advancement, and especially since the appearance of AI, one of the main concerns that have arisen is whether machines and algorithms will replace human jobs in the near future. 

Media headlines often proclaim a looming era of mass unemployment, painting a dystopian picture where machines render human labor obsolete. But upon closer examination, many of these fears are unfounded. In fact, there are compelling reasons to believe that your job is likely safer than you think.

AI and the loss of human jobs: Three myths

1. Myth: AI will lead to widespread job loss across all industries.

Reality: While it’s true that automation can streamline certain tasks and processes, it’s important to recognize that AI is not a one-size-fits-all solution. Many jobs require a level of creativity, critical thinking, and emotional intelligence that machines simply cannot replicate.

Industries such as healthcare, education, and creative arts rely heavily on human expertise and empathy, making them less susceptible to automation.

      2. Myth: A machine will be able to perform my daily tasks.

Reality: AI is often used to expand human capabilities rather than replace them entirely.

For example, in industries such as manufacturing and logistics, AI-powered robotics can enhance efficiency and productivity while releasing human workers from automatic tasks so they can focus on more complex tasks that require creativity.

By investing in education and training programs that equip workers with the skills needed to thrive in the digital economy, we can ensure that the benefits of AI are shared equitably across society.

Furthermore, history has shown that technological advancements often create new job opportunities. The rise of AI has led to the emergence of entirely new fields such as data science, machine learning engineering, and AI ethics.

As AI continues to evolve, so will the demand for skilled professionals who can apply its potential in innovative ways.

       3. Myth: It’s easier and cheaper for companies to replace human workers with AI.

Reality: There is more to this assessment than whether an AI can perform your daily tasks or not—companies need to evaluate if it’s economically beneficial to have an AI replacing human workers.

Developing and deploying AI systems can require substantial investments in hardware, software, and training. Additionally, integrating AI into existing workflows and infrastructure can be complex and time-consuming, further adding to the initial cost of adoption.

How can I make my job safer?

As with any other groundbreaking advancement, jobs will suffer some modifications, and some of them might become obsolete. However, the implementation of AI will naturally create more job opportunities. Therefore, the best way to protect your current job is to get acquainted with AI and get the best out of it.

Moreover, the implementation of AI in the workplace presents some challenges. Concerns surrounding data privacy, algorithmic bias, and ethical implications have prompted organizations to approach AI adoption with caution. As a result, there is a growing demand for professionals who can ensure that AI systems are fair, transparent, and accountable. 

Six new AI jobs

The following are some of the new job positions that have been emerging during the AI era:

AI product manager: Leads the development and launch of AI-powered products, defining product strategy, features, and requirements to meet customer needs and business goals

AI ethicist: Ensure the responsible and ethical development and deployment of AI technologies, addressing ethical considerations and societal impacts

Algorithm auditor: Verify the fairness, transparency, and compliance of AI algorithms with regulatory standards and ethical principles

NLP engineer: Specializes in natural language processing techniques to develop AI systems that understand and generate human language

Robotics engineer: Designs and builds robotic systems powered by AI to perform tasks autonomously, enhancing efficiency and productivity in various industries

AI research scientist: Conducts innovative research to advance the field of artificial intelligence, developing new algorithms and methodologies that solve complex problems

Even though they wouldn’t be considered new jobs, it’s also essential to highlight the contribution of machine learning engineers, data scientists, and computer vision engineers, among other professionals, who are currently playing pivotal roles in the advancement of AI technology.

Conclusion

In conclusion, while AI undoubtedly represents a significant technological advancement, the fear of widespread job loss is largely exaggerated. By debunking common myths and misconceptions surrounding AI, we can better understand its potential impact on the future of work.

Rather than viewing AI as a threat to employment, we should embrace it as a tool that can enhance human capabilities and drive economic growth. With the right approach, we can ensure that the jobs of tomorrow are not only safer but also more fulfilling and rewarding for workers around the world. If you are interested in this emerging technology, check our AI jobs opportunities

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By May 3, 2024
Languages, frameworks, tools, and trends

5 Trends Influencing GenAI in 2024

Generative AI has been changing the tech world over the last few years, and its emergence is already impacting our way of working and living. But it’s not merely about the advancement of machines or the automation of tasks; rather, GenAI is generating a profound transformation in how we interact with technology, how industries operate,… View Article

Generative AI has been changing the tech world over the last few years, and its emergence is already impacting our way of working and living. But it’s not merely about the advancement of machines or the automation of tasks; rather, GenAI is generating a profound transformation in how we interact with technology, how industries operate, and how we navigate our daily lives.

So the real question is: what comes next? What’s the future of GenAI? Here’s everything you need to know about trends influencing GenAI in 2024.

What is GenAI?

Generative AI refers to intricate deep learning models that learn from training data to produce new content, including text, images, videos, or music. These models undergo training on different datasets to deliver original content resembling humanlike creations. One of the most renowned examples is OpenAI’s ChatGPT, a generative AI chatbot grounded in natural language processing (NLP) which has democratized the capabilities of GenAI by making them accessible to all, regardless of coding knowledge.

5 trends influencing GenAI in 2024

  1. Generative design

Generative AI is expected to revolutionize the field of product design and development. By leveraging generative design tools, designers can generate numerous prototypes and variations in a fraction of the time it would take through traditional methods. This rapid iteration process enables designers to uncover innovative solutions, optimize designs for specific requirements, and even discover new approaches that may not have been considered otherwise.

Platforms like Autodesk are at the forefront of integrating generative AI functionality into design tools, providing designers with powerful capabilities to simplify the product development process. These tools enable designers to create digital twins of their prototypes that allow for virtual testing and simulation to evaluate factors such as structural integrity, thermal performance, and aerodynamics. By simulating real-world conditions and analyzing the results, designers can iterate and refine their designs, leading to more robust and reliable final products.

As these technologies continue to evolve and mature, we can expect to see increasingly sophisticated applications across a wide range of industries that drive further advancements in design and engineering.

  1. Generative video

Generative video tools empower users to create professional-looking videos without the need for extensive technical expertise or expensive equipment. By simply inputting parameters such as desired style, theme, and content, users can generate customized videos tailored to their specific needs. Whether it’s creating marketing videos, educational content, or social media posts, these tools offer a wide range of templates, effects, and editing capabilities to suit various purposes and audiences.

In fact, it’s expected that, by 2030, 99 percent of AI-generated images and videos will be indistinguishable from real ones.

Moreover, generative video tools can significantly reduce the time and resources required to produce video content. By automating tasks such as scene composition, text animation, and audio synchronization, these tools streamline the production workflow and accelerate the content creation process. This not only allows users to produce more videos in less time but also frees up resources to focus on other creative tasks and strategic initiatives.

  1.  Multimodal models

Most generative AI tools, algorithms, and large language models (LLMs) are designed to simulate a single mode of expression, whether it’s text, visual, or audio. However, there is a growing shift toward “multimodal” generative AI. One of the key advantages of multimodal GenAI is its ability to create richer and more immersive content experiences by combining different types of media. For example, a multimodal AI model could generate a video clip from a given text description, complete with relevant visuals and accompanying audio. This capability enables new forms of content creation and storytelling that can enhance engagement and user experience.

Additionally, multimodal generative AI has the potential to assist in tasks that require understanding and generating content across multiple modalities, such as virtual assistants and conversational agents. By integrating text, speech, and visual data, these AI systems can provide more comprehensive and contextually relevant responses to user queries and commands.

  1. Generative AI in education

Generative AI is also transforming the education sector by offering personalized learning experiences tailored to individual students’ needs. Students not only may benefit from adaptive training platforms, AI tutors, and interactive educational content that enhance their learning outcomes, but also will use it to generate reports, summaries and take accurate notes.

In addition, AI-driven analytics can assist educators in assessing student progress and optimizing curriculum design, ultimately fostering more effective teaching and learning outcomes.

  1. Generative AI-augmented apps and services

According to AIM Research, by 2024, approximately 40 percent of enterprise applications will include conversational AI as a built-in capability. This trend is already evident as developers across various platforms are actively integrating chatbots and natural language interfaces into their software. Looking ahead to 2024, it’s expected that app developers in general will increasingly adopt chat interfaces to enhance customer engagement and overall user experience.

Conclusion

Despite the remarkable advancements made over the past year, we’re still in the early stages of this GenAI journey. From emerging applications across various industries to new development approaches involving copilots, the pace of innovation in GenAI is accelerating.

This innovation isn’t confined to just one area; it’s occurring across multiple fields, encompassing both generative AI and traditional AI domains. While its potential for progress is immense, holding robust discussions and implementing ethical frameworks will be essential to ensure that GenAI serves humanity’s best interests.

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Apr 15, 2024
Top 5 AI Code Generation Tools
Languages, frameworks, tools, and trends

Top 5 AI Code Generation Tools in 2024

Traditionally, writing code has been a labor-intensive process that requires meticulous attention to detail and a deep understanding of programming languages and frameworks. However, AI code generation tools are changing this paradigm by automating large parts of the coding process.  These tools leverage machine learning algorithms trained on vast repositories of code to analyze patterns,… View Article

Traditionally, writing code has been a labor-intensive process that requires meticulous attention to detail and a deep understanding of programming languages and frameworks. However, AI code generation tools are changing this paradigm by automating large parts of the coding process. 

These tools leverage machine learning algorithms trained on vast repositories of code to analyze patterns, understand requirements, and generate human-readable code snippets. AI code generation tools have emerged as a groundbreaking innovation, promising to reshape the landscape of software engineering as we know it.

Advantages of AI code generation tools

Saves valuable time

One of the most significant advantages of AI code generation tools is their ability to accelerate the development cycle. Tasks that once took days or weeks to complete can now be accomplished a fraction of the time.

For software developers, this means increased productivity and faster time-to-market for software projects.

Transforms software development

Another key benefit of these AI tools is their potential to democratize software development. Traditionally, coding has been a specialized skill that requires several years of training and experience. With AI tools, however, individuals with less coding knowledge can create functional applications by simply describing their requirements in natural language. 

This opens up opportunities for a wider range of people to participate in software development, fostering innovation and creativity.

Reduces human error

AI code generation tools can reduce the margin of error in coding. Writing code is inherently prone to mistakes, which can lead to bugs and security vulnerabilities. By automating parts of the coding process, AI tools can help minimize these errors, leading to more robust and secure applications.

Additionally, AI-generated code is often accompanied by explanations and documentation that make it easier for developers to understand and debug.

Top 5 AI code generation tools

Open AI Codex: OpenAI Codex stands out as one of the leading AI code tools in the current landscape. Trained on extensive code datasets and leveraging OpenAI’s large language models (LLMs) like GPT-3 and GPT-4, OpenAI Codex uses an extensive dataset consisting of billions of lines of code. This tool has proficiency in over 12 programming languages, making it a versatile and invaluable resource for developers.

CodeT5: CodeT5 stands out as an open-source AI code generator designed to assist developers in writing reliable and error-free code. It offers support for a wide array of programming languages including Java, Python, and JavaScript. Moreover, CodeT5 is available in both online and offline versions, adapting to users’ preferences while ensuring data security.

SourceGraph’s Cody: The best feature of this code generator lies in its ability to grasp the context in which the code is written, thereby providing pertinent suggestions aligned with your objectives. This enhances the quality of code produced and significantly diminishes the time required for coding tasks.

Copilot:
Created through a collaboration between GitHub and OpenAI, GitHub Copilot represents a significant advancement in AI-driven programming assistance. Serving as a virtual coding partner, this tool significantly enhances developers’ coding capabilities by providing suggestions for entire lines or blocks of code as developers type. Copilot goes beyond merely regurgitating preexisting code; instead, it adapts and evolves based on each developer’s unique coding style.

Tabnine: This is an effective AI-powered code generator available online that employs machine learning techniques to anticipate and propose completions, thereby streamlining the coding process, enhancing efficiency, and reducing errors. Based on individual writing patterns, the advanced functionalities of Tabine provide features such as automatic code completion, autogenerated tests, syntax highlighting, and seamless integration with popular IDEs.

Are AI code generation tools reliable?

Even though AI code generation tools provide numerous benefits, there is one important challenge they face: the potential for bias. Machine learning algorithms are trained on data, which may reflect biases present in the source material.

This can result in AI-generated code that perpetuates or amplifies existing biases, such as gender or racial stereotypes. Developers must be vigilant in identifying and mitigating bias in AI code generation to ensure fair and equitable software outcomes. 

Another concern is the lack of transparency in how these tools generate code. Developers may be hesitant to trust AI-generated code without understanding the underlying algorithms and decision-making processes. Ensuring transparency and accountability in AI code generation will be crucial to building trust with the developer community.

Conclusion

Despite these challenges, the future of AI code generation tools looks promising. As machine learning algorithms continue to improve and datasets grow larger and more diverse, AI tools will become even more powerful and capable.

Developers can expect to see further advancements in areas such as natural language understanding, code optimization, and collaborative coding assistance. As developers embrace these tools and work to overcome obstacles, the future of software development is looking brighter than ever.

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Apr 2, 2024
Step by step guide to AI implementing
Languages, frameworks, tools, and trends

Step-by-Step Guide: How to Integrate AI into Your Projects

AI is one of the most powerful and advanced tools we currently have in the tech world. Integrating it into your projects can be extremely useful but can also be a challenging task. In this article, we’ll walk you through the intricacies of effectively incorporating artificial intelligence into your development projects. From defining objectives to… View Article

AI is one of the most powerful and advanced tools we currently have in the tech world. Integrating it into your projects can be extremely useful but can also be a challenging task. In this article, we’ll walk you through the intricacies of effectively incorporating artificial intelligence into your development projects.

From defining objectives to selecting frameworks and implementing ethical considerations, follow our step-by-step approach to elevate your projects with cutting-edge AI capabilities.

15-step guide to implementing AI in your project

By following these steps, developers can integrate AI capabilities into their current projects to enhance functionality and stay at the forefront of technological innovation.

1. Define project goals and use cases: Identify the objectives AI will help you achieve in your project. List specific use cases where AI can add value. A well-defined scope sets the foundation for successful AI integration.

This step ensures alignment between technology and business objectives and guides subsequent decisions in data acquisition, model selection, and overall implementation.

2. Assess data requirements: Identify the type and amount of data needed for AI training. Ensure data quality, diversity, and relevance to enhance the model’s performance.

3. Choose AI frameworks or tools: Once you’ve identified the requirements, select the appropriate AI frameworks (e.g., TensorFlow, PyTorch) or prebuilt AI tools (e.g., Azure Cognitive Services, AWS SageMaker).

4. Set up development environment: Install the necessary libraries and dependencies for your chosen AI framework. Set up your development environment for seamless integration.

5. Understand AI models: Gain a thorough understanding of the AI models suitable for your project (e.g., machine learning, natural language processing), and then choose models that align with your defined goals and use cases.

6. Preprocess data: Clean, preprocess, and format data to make it suitable for AI training. Consider techniques such as normalization and feature engineering.

7. Train AI models: Use your preprocessed data to train the selected AI models. Fine-tune the models to improve their accuracy and performance.

8. Integrate AI into your codebase: Embed AI components into your existing codebase. Make sure there is consistent communication between your application and the AI models.

9. Handle input and output: This step is crucial. Developers must design robust mechanisms for feeding data into AI models that ensure compatibility and effective communication. Additionally, they need to create efficient systems to interpret and utilize AI-generated outputs within their applications that optimize the overall performance and user experience.

10. Test thoroughly: Conduct extensive testing to identify and rectify any issues. Utilize unit tests, integration tests, and real-world scenarios to validate AI integration.

11. Monitor and optimize: Implement monitoring tools to track AI model performance. Continuously optimize models based on real-world usage and feedback.

12. Ensure ethical considerations: Be mindful of ethical considerations related to AI, including bias and privacy and implement necessary safeguards to address them.

You can read more about the importance of bias mitigation in our article about the current limitations of LLMs.

13. Provide documentation: Create comprehensive documentation for developers and stakeholders. Include details on AI integration, data requirements, and troubleshooting steps.

14. Plan for scalability: Develop a scalable AI integration plan that can accommodate future growth and increased demands. Developers should design their systems with scalability in mind, considering factors like data volume, user interactions, and model complexity.
Employing cloud-based solutions, optimizing code efficiency, and incorporating modular architectures enable fluid scalability. This proactive approach ensures that the AI components can efficiently handle larger datasets and user loads as the project evolves without compromising performance or user experience.

15. Stay informed and update: Last but not least, regularly update AI models and algorithms to benefit from the latest advancements. Stay informed about new developments in the AI field.

Is it necessary to include AI in your development projects?

Integrating AI in development projects is crucial for staying competitive and enhancing efficiency. AI brings automation, data-driven insights, and advanced capabilities that optimize processes, foster innovation, and deliver superior user experiences. 

However, navigating the intricate landscape of AI requires a commitment to continuous learning, adaptability, and collaboration. By following these steps, you not only harness the potential of cutting-edge technology but also position your project for long-term success in an increasingly dynamic and competitive digital landscape. Stay informed and agile to unlock new possibilities and ensure the sustained growth and innovation of your projects.

Turing leverages AI to assist clients in transforming their data into business value across diverse industries. Our utilization of AI technologies spans areas such as natural language processing (NLP), computer vision, and text processing, among others. Join Turing and be part of the future.

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Feb 22, 2024
self-improvement of LLMs
Languages, frameworks, tools, and trends

What’s Next? Self-Improvement of LLMs

From the early days of large language models (LLMs), refining and self-improvement of AI have been one of the most compelling topics. Can large language models self-improve? The unlimited nature of these tasks suggests there is constant room for enhancing model response quality.  Improving your language model entails enhancing its capabilities, refining its performance, and… View Article

From the early days of large language models (LLMs), refining and self-improvement of AI have been one of the most compelling topics. Can large language models self-improve? The unlimited nature of these tasks suggests there is constant room for enhancing model response quality. 

Improving your language model entails enhancing its capabilities, refining its performance, and addressing potential limitations. Throughout this blog, we’ll discuss the scope of self-improvement of large language models over the next few months and the potential strategies to implement them.

9 strategies for self-improving LLMs

While there are numerous strategies for the self-improvement of LLMs, some of the most crucial ones include:

  1. Dataset enrichment: Regularly update and expand the training dataset with new, diverse, and relevant information. This helps the model stay current with the latest developments and trends.
  2. Fine-tuning: Fine-tune the model on specific domains or tasks to improve its performance in those areas. This involves training the model on a smaller dataset related to the specific domain of interest. This method is beneficial because training a large language model from scratch is very expensive, both in terms of computational resources and time. By leveraging the knowledge already captured in the pretrained model, one can achieve high performance on specific tasks with significantly less data and computation.
  3. Prompt engineering: Customize at inference time with show-and-tell examples. An LLM is provided with example prompts and completions, as well as detailed instructions that are prepended to a new prompt to generate the desired completion. The parameters of the model are not changed.
  4. Evaluation and feedback loop: Implement a continuous evaluation and feedback loop. Regularly assess the model’s outputs, gather user feedback, and use this information to iteratively improve the model’s performance.
  5. Diversity in training data: Ensure that the training data is diverse and representative of various perspectives, cultures, and languages. This helps the model generate more inclusive and unbiased outputs.
  6. Ethical considerations: Implement ethical guidelines in the training process to minimize biases and ensure responsible AI. Regularly review and update these guidelines to reflect evolving ethical standards.
  7. User interaction monitoring: Analyze user interactions with the model to understand how it’s used and identify areas for improvement. This can include monitoring for instances where the model provides incorrect or biased information.
  8. Constant learning: Implement techniques for regular learning that allow the model to adapt to new information and adjust its parameters over time. This helps the model stay relevant in a dynamic environment.
  9. Regular model updates: Periodically release updated versions of the model to incorporate improvements. This could involve retraining the model with new data and fine-tuning it based on user feedback.

Alternative approaches for self-improvement of LLMs

Within this dynamic realm of self-improvement, there are some softer approaches you might want to take into account to boost LLM’s performance. 

  • Collaboration with experts: Collaborate with subject matter experts to enhance the model’s understanding of specific domains. Experts can provide valuable insights and help fine-tune the model for specialized knowledge.
  • Performance metrics: Define and track appropriate performance metrics to measure the model’s effectiveness. Use these metrics to identify areas that need improvement and guide the self-improvement process.
  • Research and innovation: Stay informed about the latest advancements in natural language processing and AI research. Implement innovative techniques and algorithms to enhance the model’s capabilities.
  • Regular maintenance: Conduct regular maintenance to address any technical issues, bugs, or performance bottlenecks that may arise. Keep the model infrastructure up to date.

Conclusion

We are at a key point in the evolution of artificial intelligence, and self-improvement is a critical aspect. The scope of this development is boundaryless, and it’s barely in its early stages. However, it is also a dynamic process that requires a very delicate balance between technological advancement and ethical mindfulness.

Ongoing research in these areas, along with collaboration among researchers and industry practitioners, will continue to drive advancements in LLMs to not only make them more powerful and beneficial in diverse applications but also ensure that they contribute positively to our growing digital landscape.

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Feb 9, 2024
junit pameterized tests
Languages, frameworks, tools, and trends

JUnit Parameterized Tests: Revolutionizing Code Flexibility

Learn how to master, test and simplify your code by using JUnit parameterized tests

In the dynamic world of software development, writing robust and adaptable tests is crucial for ensuring the reliability of your codebase. One of the most powerful features of JUnit 5, the latest version of the popular Java testing framework, is parameterized tests, which allow developers to write more flexible and concise test suites. In this blog post, we’ll dig into the world of JUnit parameterized tests and explore how they enhance test versatility and maintainability.

But first, we’ll go into a brief overview of JUnit 5. It has been developed to leverage new and powerful advances from Java 8 and beyond. It allows the use of multiple extensions simultaneously, which was not possible in previous versions. 

Parameterized tests in JUnit 5: Functionalities

Writing tests for different input values often requires duplicating test methods with varying parameters—an approach that often leads to code duplication and makes tests harder to maintain and more prone to errors. JUnit 5 parameterized tests enable developers to avoid this problem by executing one single test method with diverse parameters. Therefore, we can use JUnit 5 parameterized tests to:

  • Simplify test case writing for every possible input
  • Reduce code duplication
  • Maximize code coverage for all possible scenarios
  • Execute tests before deploying builds on the test environment
  • Minimize execution time

How to use JUnit 5 parameterized tests

First of all, in order to use parameterized tests, you have to include the junit-jupiter-params dependency.

Custom aggregators:

This functionality allows you to create parameters dynamically or apply custom logic to change the existing values. JUnit 5 allows you to achieve this by implementing a customized ArgumentsAggregator.

class CustomArgumentsAggregator implements ArgumentsAggregator {

    @Override

    public Object aggregateArguments(ArgumentsAccessor accessor, ParameterContext context) {

        return new CustomObject(accessor.getString(0), accessor.getInt(1));

    }

}

@ParameterizedTest

@ArgumentsSource(CustomArgumentsProvider.class)

void testWithCustomAggregator(CustomObject customObject) {

    // Test logic using the custom object

}

Display names

In order to create more legible names for the tests, you can use @DisplayName.. This feature is particularly useful for failed tests, allowing you to read what is going on and what is wrong easily.

Value sources

In JUnit 5, “values sources” is a feature that allows you to provide specific datasets as arguments to the parameters of a parameterized test method. This is useful when you want to run the same test with different datasets.

Instead of manually providing a list of values for the parameters of a parameterized test method, you can use predefined value sources, such as @ValueSource, to specify datasets more conveniently. Other types of sources include @EnumSource, @MethodSource, and @CsvSource.

However, you should take into account that the value sources feature only supports these types:

  • short (with the shorts attribute)
  • byte (bytes attribute)
  • char (chars attribute)
  • java.lang.String (strings attribute)
  • java.lang.Class (classes attribute)
  • int (ints attribute)
  • float (floats attribute)
  • long (longs attribute)
  • double (doubles attribute)

Null and empty values

When performing tests, it’s important to validate if the application is going to work correctly when handling null and/or empty values. In order to perform these tests, we can pass a null and empty value using annotations.

Conclusion

Parameterized testing in JUnit 5 is an indispensable tool in the arsenal of any developer committed to software quality. This revolutionary approach saves valuable time by enabling the testing of code with a variety of data without the need to replicate test methods for each scenario. The flexibility and adaptability offered by parameterized testing not only simplify test writing but also improve the maintainability of test code by reducing duplication and unnecessary complexity.

If you are a developer looking to boost your efficiency and explore a wide range of situations and conditions in a single test, parameterized tests in JUnit 5 might be one of your best allies in the landscape of software testing.

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Jan 30, 2024
LLM crystal ball
Languages, frameworks, tools, and trends

LLM Crystal Ball: Future of LLM Development

Learn what is a large language model, what is in store for the future of LLM, the uses of LLM in AI, and its current limitations

Over the last few years, large language models (LLMs) have become one of the most promising trends in the tech world. Even though in the past their use has been a matter of concern, the future prospects of LLMs are more than exciting. Since November 2022, the month in which ChatGPT (probably the most renowned LLM in AI), was launched, there have been various updates and enhancements to LLMs that make them the most significant tech development of the last decade.

What is a Large Language Model? In simple words, it is an artificial intelligence algorithm that uses massive data sets and different learning techniques in order to achieve general-purpose language understanding and also the generation of a new language.

5 current limitations of LLM

As with any other new development in the tech industry, LLMs still have some limitations that might compromise their use that still need some refining. Here are five issues that currently limit LLMs: 

  1. Lack of real understanding: LLMs may need help with reasoning, logic, and understanding context. They might provide answers that are technically correct but lack real-world common sense. Also, LLMs generate information but lack the ability to verify the accuracy or truthfulness of the content, leading them to possibly generate misinformation or respond to factually incorrect queries.
  1. Ambiguity: LLMs might struggle to differentiate ambiguous queries, often providing contextually inaccurate information. 
  1. Prone to bias: If LLMs are trained on datasets that contain biases, they will replicate them in their responses and perpetuate prejudices.
  1. Difficulty in handling dynamic information: LLMs may struggle to handle rapidly changing or dynamic information, as they are trained on static datasets. This limitation can affect their ability to provide up-to-date or contextually relevant information.
  1. Unethical use: LLMs can be used for unethical purposes, such as generating malicious content, deepfake text, or automated spam. Consequently, ensuring responsible use and preventing misuse are ongoing challenges with LLMs.

Future of LLM development: Areas of evolution

Despite these limitations, the evolution of LLM in the tech world has been continuous and astounding, opening up thrilling possibilities across various domains. So, the inevitable question is, what’s next? What’s the scope of LLMs? Future development in this field is likely to focus on several key areas:


  • Fine-tuning and specialization: LLMs are being tailored for specific industries or professions, such as legal, medical, and engineering. Current LLM development is focusing on techniques to fine-tune models to obtain better performance on niche tasks.

  • Multimodal capabilities: Development continues to improve the integration and understanding of multiple modalities, including text, images, audio, and potentially other sensory inputs. Also, these capabilities would enhance the model’s ability to generate and comprehend information across different modalities.

  • Bias mitigation and ethical AI: Bias and unethical use of LLMs are worrying issues. Strategies are being implemented to reduce biases in language generation and incorporate ethical considerations into the training and deployment of LLM.


  • Customization: Currently, LLM use is generic and can lead to ambiguity and lack of context. In the near future, LLMs are expected to allow users to customize their preferences to suit individual choices. To achieve this goal, personalized learning methods are being developed to enhance the user experience and implement mechanisms for continuous learning to keep models up-to-date and relevant.

  • Multilingual competence: LLMs are expected to expand their language support by including and polishing the use of more languages and dialects. This will make the use of LLMs more globally accessible and inclusive.

  • Edge computing integration: Making LLMs more accessible by optimizing them for deployment on edge devices will reduce the dependency on cloud-based solutions and result in increased privacy and efficiency.


  • Collaboration with other AI models: Integration with other AIs can enhance functionality and achieve a more comprehensive problem-solving technique.


  • Robustness and security: By improving their robustness against adversarial attacks and misinformation and implementing security measures, LLMs can be better protected against potential malicious uses of the technology.
  •  
  • Training methods: Developing more efficient training methods and model architectures will improve the performance of LLMs. Some of these methods include combining multiple models (ensemble learning); conducting systematic hyperparameter tuning to optimize the learning rate, batch size, and other parameters; and including different optimization algorithms to find the most suitable model for each specific task. Also, the incorporation of few-shot and zero-shot learning, which include training a model using few or null examples of a particular task, will broaden the applications for LLMs. (Currently, GPT-3 is capable of few-shot learning.)

Conclusion

The evolution of LLMs is not static—it’s a dynamic process marked by continual refinement and exploration. The impact of LLMs extends beyond mere language understanding and serves as a catalyst for a more interconnected and intelligent future. And this journey has just begun—the potential for discovery and innovation is boundless. With responsible development, ethical deployment, and continued research, LLMs are going to shape the way we interact with information, each other, and the world at large.

Furthermore, the acquisition of AI programming skills is not only advantageous but essential for developers to contribute meaningfully to the future of technology. A deep understanding of AI programming not only enables developers to navigate the diverse dimensions of AI technology responsibly but also preserves the human touch and critical thinking vital for responsible AI development.

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Jan 22, 2024
Learn how to use advanced bash scripting
Languages, frameworks, tools, and trends

Advanced Bash Scripting: Mastering Functions and Libraries

An advanced bash scripting guide to learn how to master functions and libraries to ensure code reusability and organization

Bash scripting is a powerful skill that allows system administrators and developers to automate tasks, streamline workflows, and enhance productivity. While an understanding of basic bash scripting is essential, mastering advanced concepts like functions and libraries takes your scripting abilities to a whole new level. In this blog post, we’ll explore the complexity of advanced bash scripting, focusing on functions and libraries.

Functions: The building blocks of bash scripts

If you’re a developer using advanced bash scripting, you probably know how tedious it can be to copy and paste chunks of code fragments over and over again. Bash functions are blocks of code that you can create and reuse in scripts any time you want. These reusable blocks of code enable you to modularize your scripts and enhance code maintainability. 

A bash function encapsulates a set of commands and can accept parameters, making it flexible and versatile. Here’s a breakdown of key aspects when working with functions:

  • Function declaration: In bash, declaring a function is straightforward. It can be declared like this:
    functionName {
    }

    or like this
    functionName() {
    }

  • Function invocation: Once a function is defined, you can call it by its name

  • Function parameters: Functions can accept parameters, enhancing their flexibility

Libraries: Code reusability and organization

As advanced bash scripting becomes more complex, maintaining a clean and organized codebase becomes crucial. Libraries, in the context of bash scripting, are collections of the functions we have previously mentioned and variables grouped together to address specific tasks. Creating and utilizing libraries can significantly improve code reusability and maintainability, and they allow you to organize your code into modular components.

There are some practices you can follow to maintain a clear organization of your bash scripting:

  • Library structure: A bash library typically consists of functions and variables organized logically. To create a library, save your functions in a separate file (e.g., mylibrary.sh) and then include it in your main script using the source command. Consider creating separate libraries for different purposes.

  • Function naming: Be cautious about function-naming conflicts. Prefixing functions in the library with a unique identifier can help avoid clashes with other functions.

  • Sourcing: Use the source or command to include the library in your main script. This ensures that the functions in the library are available in the current script’s context.

  • Variable scope: Variables declared in the library will have the same scope as if they were declared in the main script. Use local inside functions to limit the scope.

5 bash scripting best practices

Best practices are essential, but for various reasons, they might end up being neglected. Here are 5 best practices that you should always apply in bash scripting:

  • Comment the code

This is pretty basic but many developers forget to do it, and it’s very useful not only for yourself but for other developers that might want to check or modify your script. It also helps in understanding the role of the function—a very handy feature when you are working in remote environments.

  • Use functions

Functions, a set of commands grouped together to perform a specific task that helps modulate the workflow, make the code cleaner, more readable, and easier to maintain.

  • Employ double quotation marks

The use of double quotation marks will help eliminate unnecessary word wrapping, word splitting, and whitespace when variable values contain a separator character or whitespace.

  • Declare variables

You should always declare the variable according to its data type and use. Variables can be declared globally or locally in the script. When the variable is not declared, bash may not be able to execute the related command. 

  • Finish execution error

When executing a script, there may be an execution error. Even if a command fails to execute, the script may continue to run and affect the other commands in the script. To avoid further logical errors, you should always include ‘set -e’ to terminate the command in case of an error.

 

The art of mastering bash scripting

Bash scripting streamlines repetitive tasks, automates processes, and facilitates file and system management, which makes it an indispensable tool for operational efficiency. Thus, mastering Bash scripting can be extremely helpful. Making proper use of functions and organizing them into libraries in bash scripting will allow you to write code that’s cleaner, more modular, and easier to maintain. Not only will you enhance code reusability and reduce the risk of errors, but you will also improve your overall scripting capacity.

Get leading Bash jobs at Turing.com and work with top U.S. companies

Tell us the skills you need and we'll find the best developer for you in days, not weeks.

Hire Developers

By Jan 3, 2024